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Abstract

We propose labour games, a class of unmediated
mixed-motive cooperation games where rational
agents must collectively complete a task by taking
a negative-reward labour action U times over T'
timesteps. Each agent aims to maximize their util-
ity by minimizing their contribution, achieving an
optimal balance of labour and completion chance.
We first study a single agent in a system of opaque
agents, and find a tendency for delaying labour
actions, dubbed critical completion, similar to pro-
crastination. Using this result, we investigate the
multi-agent system, defining the rules governing
the general behaviour of agents in a labour game.
We find that agents have a preference for con-
tiguous action leading to critical completion and
characterize this behaviour as the state of com-
mitment which we show is common knowledge.
We show that commitment prevents less capable
rational agents from contributing in labour games
and illustrate the link between commitment and
emergent communication. With these principles
as a guide, we propose a mechanistic mitigation to
the undesirable phenomena and analyze its effects
on the multi-agent system. We experimentally il-
lustrate the discoveries of our theoretical analysis
using a multi-agent reinforcement learning encod-
ing of the game. Finally, we provide a discussion
on the implications of our results, the inefficacy
of current reward structures for practical multi-
agent systems, and the open question of how to
build appropriate incentive structures for produc-
tive agents.
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1 Introduction

Al agents are fast emerging as a tool to alleviate the bur-
den of many recurring and labourious tasks for businesses
and individuals alike. However, when multiple Al agents
interact without oversight, the outcomes can be volatile and
unexpected. As a result, systems where such volatile behav-
ior is possible are typically mediated by a human, limiting
their real-world feasibility and scalability. As a case in
point, when agents’ actions are in service of chores, those
actions are disincentivized, necessitating mediation to reli-
ably solve (Guo et al.} 2023). Understanding the underlying
interaction dynamics of rational, self-interested agents is
key to their safe implementation, and motivates much of
the recent work on cooperative Al (e.g. (Dafoe et al., 2020;
Clifton and Riché, 2020; 'Yu et al.,[2022)) and the work in
this paper.

A common cooperative dilemma is division of labour, where
groups of individuals working to a collective goal split up
(burdensome) tasks. Division of labour is a phenomenon
found in societies of insects, microorganisms, and other
mammals, and the efficient solution to this dilemma is often
cited as a primary driver behind evolutionary success (Page|
Robert E. and Mitchell, Sandra D. [1998). Occasionally,
division of labour is as simple as asymmetric individuals
performing their most suited tasks; however, when two or
more individuals work on the same task, they often fail to
achieve the collective goal, presenting significant challenges
when unmediated (Liu and Zhang},2019).

The most common example of this is in human group work,
where all parties prefer to see the goal completed, but of-
ten would rather perform other tasks than contribute to the
common goal. This results in a game of chicken, where one
member (usually with low risk tolerance) is exploited by
the others and performs the majority of the work (Rapoport!
and Chammabh, [1966). Thus, many wish for an altruistic
goal-minded third-party supervisor that can force an even
split of work between the group members, but this is rarely
available.

In multi-agent systems, an equivalent problem is that of
automated house cleaning, which is often performed by
systems of independently acting robots (Memmesheimer|
et al}2024). The cleaning tasks are represented as chores,
which incur a negative penalty when performed, but there
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is incentive for successfully cleaning the whole space. This
multi-agent system exhibits the same issues in that no robot
is directly incentivized to clean. If the problem is modified
such that the cleaning agents are rewarded for labour, then
they will act inefficiently and often not complete the desired
task at all (Dulac-Arnold et al.,[2019). Thus, a third-party
controller is almost always used to ensure a near optimal
outcome while the unsupervised approaches remain largely
unexplored (Nashl [1951)).

In this paper, we introduce and study the labour game, an
unmediated mixed-motive cooperation problem with self-
interested rational agents, where there exists a collective
task with a large penalty for non-completion (equivalently,
a completion reward), but contributing to this task incurs a
small, agent-specific cost. We use this problem as a framing
device to characterize the behaviour of rational agents in
the presence of a greater system of rational agents, and
investigate the emergence of cooperative phenomena.

We explore these key concepts to understand the fundamen-
tal problems with incentivizing agents in chore allocation,
and to better understand how to design practical multi-agent
systems for burdensome tasks. We begin by investigating a
labour game with a single agent in isolation, defining their
behaviour under this incentive structure. We then analyze
how this behaviour changes when the single agent is inserted
into a community of similarly incentivized agents. Through
this analysis, we propose a ruleset governing the behaviour
of the multi-agent system in a labour game, and provide
insight into the emergence of procrastination, communi-
cation, and cooperation without explicit enabling mecha-
nisms. We also describe behavioural phenomena, such as
the stark noncompletion rate of tasks that require the labour
of multiple agents. We establish techniques for mitigating
undesirable phenomena and promoting cooperation without
separate communication, and offer a reasonable, realistic
implementation for a physical system.

Our contributions can be summarized as follows:

* We propose labour games, a class of unmediated chore
allocation games

* We describe emergent phenomena in the behaviours
of rational agents in a labour game, including produc-
tive procrastination and communication, and prove key
facts about them

* We provide analysis on how to mitigate the undesir-
able phenomena and mechanistically encourage more
cooperative behaviours

* We illustrate our theoretical results using experiments
in multi-agent reinforcement learning

Our work provides a theoretical framework for studying un-
mediated multi-agent systems focused on chores and other
burdensome tasks, addressing a gap in current literature and
opening an important avenue for the successful implementa-
tion of practical multi-agent systems.

2 Related Work

Cooperation and Safety: The emerging field of coopera-
tive Al has received much attention as of late, producing
foundational and cautionary works which tout the benefits
and risks of cooperative scenarios (Muglich et al., 2022}
Baker, 2020; [Dafoe et al., 20215 [Tan, (1993 |Willis et al.,
2025). Many agentic systems are analyzed under the as-
sumption of a general controller for all the agents or some
degree of transparency and architectural similarity between
them (Hughes et al.l 2018} [Yu et al.| 2022} [Zhu et al., [2025)).
Thus, when agents interact with unfamiliar agents, the re-
sults can be unpredictable and dangerous (Hammond et al.,
2025; Piatti et al.|, 2024). Understanding the potential of
cooperative systems and mitigating their risks is the primary
focus of cooperative Al (Conitzer and Oesterheld, 2023;
Han et al., [2024)). This brings to question problems such as
outcome fairness, definitions of cooperative vs. exploitative
behaviour, and behavioural preferences. Cooperative Al
researchers have recently become concerned with the trust-
worthy deployment of agentic Al, including multi-agent
systems, and how the result of interaction between two un-
known agents can be made reliable and safe (Dafoe et al.,
2020; [Clifton and Riché, 2020; Zhang et al.,2024). One line
of work (e.g. (Rahman et al.}[2023 Wang et al.|[2024)) trains
single agents to cooperate with unknown agents with dis-
tinct agendas, but this generally takes an optimistic view of
the other agents one might encounter, disregarding exploita-
tive or disruptive agents. We re-analyze the fundamental
problem of opaque agent interaction to help better define the
default behaviour of these rational agent systems to better
inform future research on their design. We hope to use the
emerging behaviours (e.g. (Guo et al.| 2024))) that have been
uncovered by recent cooperative Al research as a pathway
to study the game theoretic reasons behind them.

Social Dilemmas in Multi-Agent Reinforcement Learn-
ing: Hughes et al.|(2018) define social dilemmas as games
where all of the following hold: mutual cooperation has a
higher collective welfare than mutual defection; mutual co-
operation is preferable to being exploited; and either mutual
defection is preferable to being exploited, or exploiting a co-
operator is preferred to mutual cooperation. Existing work
investigating social dilemmas in multi-agent reinforcement
learning (Mintz and Ful [2024; Wang et al., 2021} [Hughes
et al., 2020; Yocum et al., 2023} [Lupu and Precup, [2020;
Rios et al.| 2023 [Leibo et al., [2021; [Tennant et al., [2023;
McKee et al.| [2023)) seeks to understand and solve social
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dilemmas through extrinsic mechanisms or imbuing agents
with certain behaviour preferences. For extrinsic mecha-
nisms, [Haupt et al.|(2024) develop the idea of contracting in
multi-agent reinforcement learning as unconditional reward
transfer attached to certain actions. [Hughes et al.| (2020)
use a forced-action version of contracting to a similar end,
allowing for an agreement and subsequent fixed action. For
intrinsic properties, [Hughes et al.| (2018)) investigate using
inequity aversion without explicit mechanisms for coopera-
tion, and find that similar results can be achieved this way.
There are many examples of both strategies, e.g. (Wang
et al.;|2021; [Lupu and Precup, |2020; McKee et al.| 2023}
Chen et al.|[2024) which find varying levels of success in
finding more human solutions.

Fair Allocation Problems: Allocation problems are a well
studied class of problems that involve fairly distributing
divisible or indivisible goods amongst a group of agents.
Recent literature on allocation problems involves allocation
of ‘chores’, or bothersome tasks that do not benefit the
agent they are allocated to (Li et al.} 2023} |Garg et al., 2023]).
Algorithms for this involve notions of envy-freeness, search
efficiency, and constrained solutions, e.g. (Cookson et al.,
2024 |Yin and Mehtal [2022; |Aziz et al., 2023} |Bhaskar et al.|
2022; Ebadian et al., |2022). A common thread throughout
allocation problems is the presence of a powerful third-party
that can assign the goods to each agent, and is trusted to do
so in a fair way (Guo et al., 2023)). There is also a distinct
class of problems known as division of labour problems,
which occur in nature, and often deal with similar solution
techniques to chore allocation (Zhao and Zhang| 2023)). In
our research, we are focused on a problem very similar to
chore allocation, only we remove the need for an altruistic
third-party, and provide a system for the agents to self-
allocate in a temporally extended manner. This is a critical
gap in chore allocation literature, and provides a basis for
future works studying the unmediated problem.

3 Problem Formulation

We are motivated by a class of problems that see multi-agent
systems working towards a collective goal, comprised of one
or more burdensome tasks (chores) which may require the
contributions of multiple agents. This set of problems may
arise when an agent is completing a task and we wish to help
it by adding other agents to the system, or when an agent
considers the impact of unknown potential contributors. In
addition, agents may be preoccupied, and thus will be idle
on certain tasks for that time.

Classically, these multi-agent systems are realized with an
altruistic third party working towards the collective goal
with fairness in mind (Guo et al., 2023)). However, this is
often unrealistic and expensive, especially when the num-
ber of agents is high, so we would like to use multi-agent

systems without constant third-party supervision and prede-
fined problem-specific division of labour. To this end, we
consider a class of problems where the system of agents
operates without a set chore distribution, and provide a
framework for analyzing this novel scenario.

We represent this scenario as a temporally extended division
of labour where the multi-agent system must complete a cer-
tain number of labour units within the time limit. Following
the literature on chores (e.g. (Aziz et al.| [2023)), we choose
to represent labour actions with a reward penalties. We also
impose a reward penalty if the task is incomplete at the time
limit to represent incentive to complete the task. Agents are
disincentivized to labour, but an incomplete task is often
worse, so agents prefer that labour is done by other agents
but will labour if required. To increase the realism of the
setting, these penalties are agent-specific.

Definition 1 (Labour Games) A labour game G =
(U, T,r.f) is an N-agent game where a multi-agent sys-
tem must complete U burdensome units of labour within
T timesteps. r = (rq, ...,"n—1) denotes the agent-specific
labour penalties, and f = (fo, ..., fN—1) denotes the agent-
specific failure penalties. Each agent acts simultaneously
at each timestep, choosing either to labour, receiving their
penalty r;, or to idle. If there are less than U units of labour
completed when all timesteps have elapsed, each agent re-
ceives their failure penalty f;. If U or more units of labour
are completed before 'T' timesteps have elapsed, the game is
Won.

Definition 2 (Markov Labour Game) A Markov Labour
Game M for a labour game G = (U, T,r.f) is a fully
observable Markov game M = (S, so, A, L, R, v, trem)
with U € Zt and T € Z*. S is a state space; so € S
is the initial state; A = Ag X Ay X --- X An_1 is the
space of actions for N agents, where A; = {idle, labour};
L :Sx A — Sis atransition function; R : S x A —
{0,709, fo} x{0,7r1, fi} x---x{0,rn_1, fN_1} is a reward
function mapping state-action profiles to reward vectors for
the N agents. We denote ¢, as the current time remaining,
beginning at t,ep, = T'; u; as the number of labour actions
taken by agent i, r; as the penalty for agent i for performing
the labour action; and f; as the loss penalty for agent i. We
adopt the convention that the timestep t, e, = 0 is solely
for a final win/loss check, so the last actionable timestep is

trem = L.

In a labour game, agents may only interact indirectly
through the task, there is no additional avenue for com-
munication or interference. In addition, we consider units
of labour to be wholly equivalent and unlimited up to the
number of units required: if two agents labour in the same
timestep, it does not matter which agent receives which unit
of labour.
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Winning a labour game constitutes the multi-agent system
completing U units of labour within 7" timesteps. Losing
a labour game constitutes more than one unit of labour re-
maining uncompleted when t,.,, = 0. The solution of a
labour game consists of a labour schedule for each partici-
pating agent, dictating for each time step whether the agent
should execute an idle action or a labour action. Individual
agents may be better or worse off than others depending on
the notion of fairness used. An envy-free solution consists
of no agent taking the labour action more than any other
agent. An equal solution has the ratio of overall labour uti-
lization in each agent as the same. We also recognize other
notions of fairness (e.g. (Guo et al.| 2023))) would dictate
different fair solutions. Refining the concept of completion,
we denote the scenario where the labour game is won after
using the entire time limit as critical completion.

Definition 3 (Critical Completion) A labour game is crit-
ically completed if the final unit of labour is performed at
the final actionable timestep t,em = 1.

4 Analysis

In the analysis of labour games, we assume the multi-agent
system is composed of rational, self-interested agents that
may be of different architectures but share the labour game
incentive structure. All agents must share the collective
goal of completing the task, and prefer completion to non-
completion (i.e., a failure penalty f; < 0). We denote
action sequences that result in a utility less negative than f;
as preferable. In addition, the penalties will share a strict
hierarchy of magnitudes: |f;| > |r;| to ensure no agent
prefers failure over a single unit of labour. We also assume
that multiple labour actions on a single timestep are not
strictly necessary to win (U < T, and that t,.,, counts
down from t,¢,, = T t0 tyer, = 0.

By the formulation of [Hughes et al.|(2018)), this game clas-
sifies as a social dilemma: mutual cooperation has a higher
collective welfare than mutual defection, exploiting a coop-
erator is preferable to cooperating, and mutual cooperation
is preferable to being exploited. Thus, the best outcome
will not be achieved by self-interested action; in this section,
we will characterize the behaviour patterns that result from
self-interested action and the outcomes that follow. We also
consider the realistic aspect that a labour game solution
should minimize the total timesteps taken to completion,
beyond just the (possibly artificial) time limit 7.

4.1 Single-Agent Behaviour

In this section, we consider a single agent in a labour game,
and show the default labour patterns of the single agent
when operating uninterrupted.

First, we define labour capacity x;, a unitless quantity, as
the ratio of the failure penalty f; to the labour penalty r;,
equivalent to the number of labour actions an agent ¢ can
perform in a labour pattern before failure is preferable. Also,
let H; be the utility of agent ¢ after the game.

Definition 4 (Labour Capacity) An agent i in a Markov
labour game M has utility H;, and labour capacity x; = Z—’
representing the number of labour actions the agent can
plan to take before failure is preferable: v; = r; —

H; = wiri = f;.

A single agent will prefer a labour pattern if and only if
an amount of labour u; < x; prevents failure; therefore, a
single agent will only win a labour game if U < x;. This
directly leads to the first result on when labour is preferable
for a single agent.

Proposition 1 An agent i in a Markov labour game M will
win the game if and only if x; > U, and will otherwise idle
rather than labouring.

Proof Sketch: The full proof, as with all the proofs in
this paper, is provided in the supplementary material; we
provide a sketch of the intuition in its place. The proof
for this proposition follows directly from the maximization
of utility; an agent ¢ has essentially the following utility
H; = max(r;U, f;). Clearly, the agent will not labour if it
does not lead to completion, and if completion has a lower
utility than failure, then idling is preferable.

4.2 Multi-Agent Behaviour

We now consider a multi-agent system in a labour game,
and show how the presence of other (possibly unknown)
agents following the same incentive structure affects the
labour patterns of the individual agents. We then analyze
the emergent phenomena that occur and propose a set of
rules governing the behaviour of single agents in the multi-
agent system.

The presence of other, possibly productive, agents in a
labour game necessarily changes the behaviour of a single-
agent. In the single-agent labour game, all timesteps are
equally favourable due to the fixed labour penalty. Adding
the presence of other agents also adds the possibility of
labour contributions from other agents. A single agent will
always act to maximize their utility, and therefore maximize
the possible labour contributions from other agents by de-
laying their own actions. We use this behaviour to introduce
the concept of an action discontinuity, a point in the game
where an agent switches from repeatedly taking the ‘idle’
action to repeatedly taking the ‘labour’ action or vice versa
(e.g. an isolated unit of labour is two action discontinuities).

Definition 5 (Action Discontinuity) /n a Markov labour
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game M, an action discontinuity is a timestep where an
agent 1 takes a different action from the previous timestep.

Lemma 1 In a Markov labour game M, an agent i acting
in isolation will have at most one action discontinuity.

If multiple agents take the labour action, this transmits new
information to each agent, allowing the labour action to
be further delayed. The constant delay of labour leads to
the final units of labour always being performed on the last
actionable timestep %,..,,, = 1, which is a defining behaviour
of agents in a labour game.

Theorem 1 An agent i acting in a Markov labour game M
without knowledge of other agents’ incentive structures will
critically complete all labour games where x; > U, where
x; is the labour capacity defined Definition

Proof Sketch: A single agent ¢ acting without knowledge
of any other agents involved in the collective goal prefers
success over failure while minimizing u; as much as possi-
ble to maximize the overall reward at the end of the game.
Assuming actions impose time invariant penalties, it follows
that in the presence of unknown actors, it is preferable for
any given agent to act later than earlier to minimize their
amount of labour due to the possibility of intervention. A
single agent will therefore idle for the first 7' — U timesteps,
at which point idling more causes unpreferable failure. Thus
labour will always begin at ¢,..,,, = U in the absence of in-
terference. If any labour is performed by an outside source,
this will be further pushed back to ¢,¢,, = U — X;u;. The
last unit of labour is performed on the last timestep in all
cases, verifying the claim.

From Theorem [I] it follows that labour actions are per-
formed in contiguous time intervals with the maximum
amount of delay on each interval to allow for the maximum
contribution from other agents. This gives rise to another
condition on their behaviour, the minimization of action
discontinuity.

Lemma 2 An agent i acting in multi-agent system inside a
Markov labour game M will minimize action discontinuity.

Using Lemma [2] for an agent ¢ if 2; > 0 we can define
a time t,.,, = t; where the agent will begin labour and
continue until ¢,..,, = 0 in the absence of actions by other
agents. This time represents the critical point where the
agent now prefers contributing to a critical completion over
losing the game. We define this behaviour as commitment,
and posit that this labour pattern is rational and common
knowledge amongst the agents.

Definition 6 (Commitment) An agent i in a Markov
labour game M is considered committed if | f;| > |trem7i]
and u; > 0. Committed agents prefer labouring for the

remaining amount of time in the labour game over losing
the game.

We use k; to denote the number of committed agents ex-
cluding agent ¢. As it is irrational to take a labour action if
not committed, agents observed taking labour actions must
be committed, which affects the decision making of other
agents. Therefore, the behaviour of an agent ¢ is informed
by k; at any given timestep, as it represents a promise of
future labour by other agents. Then, it is not rational for ¢ to
commit if k; is such that ¢ is unnecessary or insufficient for
critical completion. As k; has only IV possible values across
all agents, commitments will occur at a discrete number of
points where an agent could possibly contribute to a criti-
cal completion. We denote these decision points for as tx, .
The timing of the contiguous labour blocks, and therefore
the behaviour of all rational agents in labour games, de-
pends entirely on the times ¢, and the number of currently
committed other agents k;.

Theorem 2 Let k; be the number of committed agents, ex-
cluding agent i, in the Markov labour game M, and ty,
be the commitment decision times for an agent i. The be-
haviour of an agent i in M is governed by the number of
committed agents; an uncommitted agent will only commit
if they are necessary and sufficient to critically complete the
game:

1oty = [52]

2. If (trem S tkl) A (u1 + tremri < f’L) A (tremki <
U—-3%u) N(U—2;u; < trem(k;+1)), at any point,
then agent © will commit

3. Agent i will labour iff i is committed and t ¢, < ti,

i

Proof Sketch: From Theorem [I] any agent ¢ will critically
complete a Markov labour game M if z; > U. The first
statement represents the modified threshold for critical com-
pletion based on the commitment of the other agents. It
is similarly known that agents will maximize their overall
reward by minimizing the number of labour actions taken.
Thus, a non-committed agent committing is only preferable
if the agent ¢ is necessary and sufficient for the completion
of the game and it maximizes the overall reward when tak-
ing account of the previous and future work required for
critical completion, which gives the second statement.

A direct consequence of Theorem 2]is that commitment is
always accompanied by a labour action. Therefore, no agent
will begin to labour unless 3i | 2; > U, and this labour will
begin at precisely tg = U. Intuitively, this is explained by
the rationality of not wasting effort; the opportunity cost
of acting without completing the task is high: agents are
shown to act only when there is a guaranteed win.
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Thus, for all agents j where x; > U, commitment will
occur precisely at ¢ty = U, immediately reducing the thresh-
oldtot; = [%1 All agents will switch to idling until
trem = tj, and then all j committed agents will begin an-
other contiguous labour block to critically complete the
labour game. This behaviour is explained by the prior state-
ments; all 5 agents prefer completion and prefer performing
all remaining labour over failure, therefore only one of the j
agents is strictly necessary, and this is common knowledge.
Therefore, all j agents prefer idling until the point of critical
completion (from Theorem |T).

4.3 Rational Communication and Procrastination

In this section, we use the results of Theorem 2] to elucidate
the key emergent phenomena: procrastination and commu-
nication, and show how these are rational behaviours.

Two results are immediately visible from Theorem 2} first,
the decision making process of rational agents in a labour
game depends solely on the number of agents that have
taken the labour action in at least one timestep; second, the
idle action is preferable over the labour action until the point
where critical completion is not possible. The first result
demonstrates the emergence of the first non-idle action as
a form of communication between the agents with x; > U,
indicating their commitment. However, for agents with
x; < U, this communicative action can never occur. We
call this productive communication, as it only takes place
if the action itself is never wasteful. Thus, only a subset of
agents can viably communicate and therefore cooperate.

Lemma 3 In a Markov labour game M, all contributing
agents i must have x; > U.

The second result is a behaviour similar to procrastina-
tion (Rozental et al.| [2022), and we have demonstrated (The-
orem [T that it is due to a combination of rationality and
the opaqueness of the participating agents. Thus we have
an important result: agents will invariably take the whole
time limit to complete a labour game, whether it ends in
success or failure, even if 7' > U.

Corollary 1 All won Markov labour games M are won at
time trem = 0.

Connecting this result back to practical applications, if mul-
tiple agents are assigned to a burdensome task without a
hard deadline, the agents will infinitely procrastinate, re-
sulting in the task never being accomplished. Further, if
the agents are required to cooperate for the completion to
be preferable over failure, then the task will also never be
accomplished. In either case, any agent that requires help to
complete the task, due to time limits or incentive structure,
will never participate. This poses a fundamental challenge
for multi-agent system implementation and design, as agents

will not be able to complete tasks greater than their own
capabilities without an explicit third-party controller.

4.4 Mitigating Rational Procrastination

The clear obstacle for cooperation is the influence of rational
procrastination preventing the agents from communicating
and affecting the decision processes of others. Rational
agents assume that the communication action will be wasted
if cooperation is strictly required, i.e. that the other agents
are minimally useful. A possible solution to this is to flip
this viewpoint, and view other agents as maximally useful,
or, an optimistic agent.

We use maximally useful to denote an assumption that the
next ty, is favourable for as many uncommitted agents as
necessary to make the thresholds ¢, favourable overall
(from Theorem [2). This behaviour utilizes the upper bound
on favourable timesteps by using the previous observations
of noncommittal action rather than the lower bound. There-
fore, an optimistic agent ¢ will ‘waste’ action at least as
much as a non-optimistic agent, but is capable of coopera-
tion when z; < U.

Theorem 3 The behaviour of an optimistic agent i in a
Markov labour game M is governed by possibility of com-
pletion; an optimistic agent considers all possible commit-
ment points, and commits if it is possible there are enough
agents to critically complete the game:

LT, = {([5F4],N - 1), ([(5F244)],N -
2), ..., ([(F324)],0)}

2. If El(tk’a k/) € Tk | (trem < tk’) A (uz + tremT: <
fi) A\ (tremk/ <U-— Zjuj) A\ (U — Ejuj < trem(k/ =+
1)) at any point, then agent i will commit

3. Agent i will labour iff agent i is committed and
((trem < tk’) A (k’L > k/)) \ (trem = tk’)

Proof Sketch: The proof follows similar logic to the proof
of Theorem [2} with the modification for the definition of
optimism represented as assuming a fictitious &’ and replac-
ing this with the observed k; immediately after the critical
timestep ty.

Corollary 2 Any Markov labour game M with a subset of
agents B such that Vi € B, |r;| < h%l\ is won by a system
of optimistic agents.

Proof Sketch: The condition states that there exists a subset
of |B| agents for which \%I labour actions are favourable.
This threshold will be favourable for all agents in B by
Theorem [3] resulting in a critical completion of the game.

Optimism is a way of encoding the assumption of maxi-
mal usefulness onto the multi-agent system. In effect, this
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achieves a weak form of transparency by allowing the agents
to rationally cooperate when x; < U. This is equivalent
to introducing a mild incentive to discontinuous units of
labour for each agent, u; = 0 — r; < —%, which is
shown in the supplementary material. This shows that facil-
itating communication in labour games directly results in
an increase in solution power for a multi-agent system, con-
sistent with the experimental results in the literature (Tan,

1993).

5 Experiments

We illustrate several of our claims experimentally using
various multi-agent reinforcement learning systems, repre-
senting our self-interested rational agents as reward-driven
actors. We use standard multi-agent reinforcement learning
methods, following previous literature (Schulman et al.|
2017; [Yu et al.l 2022), except the agents do not share
weights. The full details can be found in the supplementary
material.

In particular, we run experiments for three cases: (1) the
base case, (2) the optimistic mechanism, both described
above in the analysis section; (3) the transparent case, which
adds each agents’ labour capacity to the observations of each
agent. We use these cases to evaluate the robustness of our
findings with regards to the expected labour patterns of the
agents. For consistency, the heterogeneous agent labour
capacities always follow xg =21 > U > 29 > z3 > 1. In
order to promote learning, we introduce small stochasticity
in U and T while enforcing T' > U. We also fix all failure
penalties f; = —1, Vi € 0, ..., N — 1 so that H,x = 0, and
H,y, < —1 indicates a loss in that episode.

5.1 Results

Base Case: as shown in Fig.[I| Agents O and 1 labour ap-
proximately half of the labour requirement each, as expected
from Theorem 2] We can also see Agents 2 and 3 labour
minimally, which illustrates Lemma[3] The time remaining
graph shows Theorem [[Jand Lemmal[I} the agents quickly
converge critical completion. The average utility graph
shows the favourability of the displayed labour pattern over
failure. Extended plots can be found in the supplementary
material.

Optimistic Mechanism Case: we have chosen to imple-
ment the optimistic mechanism as a 90% discount on the
first labour action for each agent. As shown in Fig.[2] this
causes the agents with smaller x; to participate more com-
pared to the base case. The labour penalty remains signifi-
cant (e.g. Agent 3 has a strictly lower utility compared to
the base case), but the first commitment threshold time is
viable, therefore labour occurs temporarily as is predicted
by Theorem 3]

Transparent Case: the plots for the transparent case can
be found in the supplementary material. Notably, the per-
formance is similar to the optimistic case, showing the effi-
ciency of the mechanistic implementation.

6 Concluding Remarks & Limitations

In this work, we analyzed labour games, a class of unmedi-
ated mixed-motive cooperation games where rational agents
must collectively complete a task by taking negative-reward
labour actions. By studying single agents in a system of
opaque agents, we find a tendency towards critical comple-
tion, a behaviour similar to procrastination. We show how
this manifests in multi-agent systems, preventing contribu-
tions from less capable agents. We further illustrate the link
between this behaviour and the emergence of costly com-
munication. With these principles as a guide, we propose
a mechanistic mitigation to these phenomena and analyze
its effects on the multi-agent system. We demonstrate our
results by encoding the problem into a multi-agent reinforce-
ment learning system, illustrating the proposed phenomena.
Finally, we raise important issues about the inefficacy of cur-
rent reward structures, inviting questions on how to properly
design productive multi-agent systems.

This work is not without its limitations. An envy-free solu-
tion to a labour game G can only occur in the symmetric ca-
pacity case where all agents ¢ have z; > U. Non-symmetric
cases raise questions of fairness found in other forms of
chore allocation literature (e.g. (Aziz et al., 2023} |L1 et al.,
2023)). We leave further investigation into notions of fair-
ness in a labour game for future works.

We also recognize that there are many equivalent formu-
lations, including rewarding completion and rewarding
idle action, which follow from an application of reward
shaping (Ng et al., [1999). With p; as the reward for tak-
ing the idle action, we propose that the following condi-
tion is sufficient for the results of our analysis to hold:
fi < r < 0 < p;, and provide a proof in the supple-
mentary material. We leave a more thorough analysis of
sufficiency and necessity for future works.

The labour game we introduced in this paper is the most
distilled form, intended to represent the behaviours of multi-
agent systems performing division of labour on a burden-
some task while accounting for the possibility of failure.
This formulation is necessarily limited to a single type of
task, as we do not consider aspects such as preferences be-
tween tasks with the same time thresholds or the behaviours
that result. Extending the labour game with several types of
tasks with separate penalties per task per agent would further
increase the realism and provide more concrete insights into
the best practices for multi-agent system implementation.

We also do not consider repeated labour games as a sce-
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Figure 1: Agent behaviours in a Markov labour game, showing the number of times each agent took the labour action in an
episode (1 game). Average utility is the average of all the agents’ utility for that episode. The Time Remaining plot shows
the agents quickly converge to critical completion, while the Average Utility plot shows the game is almost always won.
Agents 2 and 3 are shown to contribute minimally despite a nonzero labour capacity.
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Figure 2: Agent behaviours in a Markov labour game with the optimistic mechanism (implemented as a first action discount),
showing the number of times each agent took the labour action in an episode (1 game). Agents 2 and 3 are shown to
contribute more despite no incentive.

nario, this would allow for more capable agents to model 7 Acknowledgements
each other, and for strategic action to avoid taking labour
actions. The repeated case is measured to a degree in the
multi-agent reinforcement learning experiments, which are
necessarily the same game repeated to train the policies,
but we did not perform an in-depth investigation into the
effects, instead using them to find the natural equilibria
of the labour game. Lastly, we do not consider long-term References
effects from labour. The agents are assumed to be static
without the ability to improve at certain tasks. An imple-
mentation of the evolution of agents may offer an alternative
form of incentive to mitigate the rational procrastination
phenomenon.

Resources used in preparing this research were provided, in
part, by the Province of Ontario, the Government of Canada
through CIFAR, and companies sponsoring the Vector Insti-
tute.

Hao Guo, Weidong Li, and Bin Deng. A survey on fair
allocation of chores. Mathematics, 11(16), 2023. ISSN
2227-7390. doi: 10.3390/math11163616. URL https:
//www.mdpi.com/2227-7390/11/16/3616.

Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum
Collins, Kevin R. McKee, Joel Z. Leibo, Kate Larson, and
Thore Graepel. Open problems in cooperative Al, 2020.
URLhttps://arxiv.org/abs/2012.08630.


https://www.mdpi.com/2227-7390/11/16/3616
https://www.mdpi.com/2227-7390/11/16/3616
https://arxiv.org/abs/2012.08630

It’s Rational for AI Agents to Procrastinate

Jesse Clifton and Maxime Riché. Towards cooperation in
learning games. Working paper, 2020.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao,
Yu Wang, Alexandre Bayen, and Yi Wu. The sur-
prising effectiveness of ppo in cooperative, multi-agent
games, 2022. URL https://arxiv.org/abs/
2103.01955.

Page, Robert E. and Mitchell, Sandra D. Self-organization
and the evolution of division of labor.  Apidolo-
gie, 29(1-2):171-190, 1998. doi: 10.1051/apido:
19980110. URL https://doi.org/10.1051/
apido:19980110.

Siyuan Liu and Jianlei Zhang. The networked divi-
sion of labor game based on adaptive dynamics
xxthis work was supported by national natural sci-
ence foundation of china (grants nos. 61603201,
61603199 and 91848203), and the tianjin natural
science foundation of china (grant no. 18jcy-bjc18600).
IFAC-PapersOnLine, 52(3):156-161, 2019. ISSN 2405-
8963. doi: https://doi.org/10.1016/j.ifacol.2019.06.027.
URL https://www.sciencedirect.com/
science/article/pii/S2405896319301119.
15th IFAC Symposium on Large Scale Complex Systems
LSS 2019.

Anatol Rapoport and Albert M. Chammah. The game of
chicken. American Behavioral Scientist, 10(3):10-28,
1966. doi: 10.1177/000276426601000303. URL|https |
//doi.org/10.1177/000276426601000303.

Raphael Memmesheimer, Martina Overbeck, Bjoern Kral,
Lea Steffen, Sven Behnke, Martin Gersch, and Arne
Roennau. Cleaning robots in public spaces: A survey
and proposal for benchmarking based on stakeholders
interviews, 2024. URL https://arxiv.org/abs/
2407.16393l

Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hes-
ter. Challenges of real-world reinforcement learning.
CoRR, abs/1904.12901, 2019. URL http://arxivl
org/abs/1904.12901l

John Nash. Non-cooperative games. Annals of Mathematics,
54(2):286-295, 1951. ISSN 0003486X, 19398980. URL
http://www. jstor.org/stable/1969529.

Darius Muglich, Luisa Zintgraf, Christian Schroeder de Witt,
Shimon Whiteson, and Jakob Foerster. Generalized be-
liefs for cooperative Al, 2022. URL https://arxiv,
org/abs/2206.12765.

Bowen Baker. Emergent reciprocity and team formation
from randomized uncertain social preferences, 2020.
URLhttps://arxiv.org/abs/2011.05373.

Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric
Horvitz, Kate Larson, and Thore Graepel. Cooperative
ai: machines must learn to find common ground. Nature,
593(7857):33-36, 2021.

Ming Tan. Multi-agent reinforcement learning: Indepen-
dent versus cooperative agents. In Paul E. Utgoff, edi-
tor, Machine Learning, Proceedings of the Tenth Interna-
tional Conference, University of Massachusetts, Amherst,
MA, USA, June 27-29, 1993, pages 330-337. Morgan
Kaufmann, 1993. doi: 10.1016/B978-1-55860-307-3.
50049-6. URL https://doi.org/10.1016/
b978-1-55860-307-3.50049-6.

Richard Willis, Yali Du, Joel Z Leibo, and Michael Luck.
Will systems of 1lm agents cooperate: An investigation
into a social dilemma, 2025. URL https://arxiv.
org/abs/2501.16173.

Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls,
Edgar Duefiez Guzman, Antonio Garcia Castafieda,
lTain Dunning, Tina Zhu, Kevin McKee, Raphael
Koster, Heather Roff, and Thore Graepel. Inequity
aversion improves cooperation in intertemporal social
dilemmas. In Advances in Neural Information Pro-
cessing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.
cc/paper_files/paper/2018/file/
7fea637fdod02b8f0adf6f7dc36aed93-Paper.
pdfl

Kunlun Zhu, Hongyi Du, Zhaochen Hong, Xiaocheng Yang,
Shuyi Guo, Zhe Wang, Zhenhailong Wang, Cheng Qian,
Xiangru Tang, Heng Ji, and Jiaxuan You. Multiagent-
bench: Evaluating the collaboration and competition of
llm agents, 2025. URL https://arxiv.org/abs/
2503.01935.

Lewis Hammond, Alan Chan, Jesse Clifton, Jason
Hoelscher-Obermaier, Akbir Khan, Euan McLean, Chan-
dler Smith, Wolfram Barfuss, Jakob Foerster, Tomas
Gavenciak, The Anh Han, Edward Hughes, Vojtéch Ko-
vaiik, Jan Kulveit, Joel Z. Leibo, Caspar Oesterheld,
Christian Schroeder de Witt, Nisarg Shah, Michael Well-
man, Paolo Bova, Theodor Cimpeanu, Carson Ezell,
Quentin Feuillade-Montixi, Matija Franklin, Esben Kran,
Igor Krawczuk, Max Lamparth, Niklas Lauffer, Alexan-
der Meinke, Sumeet Motwani, Anka Reuel, Vincent
Conitzer, Michael Dennis, Iason Gabriel, Adam Gleave,
Gillian Hadfield, Nika Haghtalab, Atoosa Kasirzadeh,
Sébastien Krier, Kate Larson, Joel Lehman, David C.
Parkes, Georgios Piliouras, and Iyad Rahwan. Multi-
agent risks from advanced AI, 2025. URL https:
//arxiv.org/abs/2502.14143.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bern-
hard Scholkopf, Mrinmaya Sachan, and Rada Mihal-


https://arxiv.org/abs/2103.01955
https://arxiv.org/abs/2103.01955
https://doi.org/10.1051/apido:19980110
https://doi.org/10.1051/apido:19980110
https://www.sciencedirect.com/science/article/pii/S2405896319301119
https://www.sciencedirect.com/science/article/pii/S2405896319301119
https://doi.org/10.1177/000276426601000303
https://doi.org/10.1177/000276426601000303
https://arxiv.org/abs/2407.16393
https://arxiv.org/abs/2407.16393
http://arxiv.org/abs/1904.12901
http://arxiv.org/abs/1904.12901
http://www.jstor.org/stable/1969529
https://arxiv.org/abs/2206.12765
https://arxiv.org/abs/2206.12765
https://arxiv.org/abs/2011.05373
https://doi.org/10.1016/b978-1-55860-307-3.50049-6
https://doi.org/10.1016/b978-1-55860-307-3.50049-6
https://arxiv.org/abs/2501.16173
https://arxiv.org/abs/2501.16173
https://proceedings.neurips.cc/paper_files/paper/2018/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7fea637fd6d02b8f0adf6f7dc36aed93-Paper.pdf
https://arxiv.org/abs/2503.01935
https://arxiv.org/abs/2503.01935
https://arxiv.org/abs/2502.14143
https://arxiv.org/abs/2502.14143

It’s Rational for AI Agents to Procrastinate

cea. Cooperate or collapse: Emergence of sustainable
cooperation in a society of llm agents, 2024. URL
https://arxiv.org/abs/2404.16698\

Vincent Conitzer and Caspar Oesterheld. Foundations of
cooperative Al. In Brian Williams, Yiling Chen, and
Jennifer Neville, editors, Thirty-Seventh AAAI Confer-
ence on Artificial Intelligence, AAAI 2023, Thirty-Fifth
Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2023, Thirteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2023, Wash-
ington, DC, USA, February 7-14, 2023, pages 15359—
15367. AAAI Press, 2023. doi: 10.1609/AAAL.V37113.

26791. URL https://doi.org/10.1609/aaai.

v37113.26791l

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin,
Zhaozhuo Xu, and Chaoyang He. Llm multi-agent
systems: Challenges and open problems, 2024. URL
https://arxiv.org/abs/2402.03578.

Ceyao Zhang, Kaijie Yang, Siyi Hu, Zihao Wang, Guanghe
Li, Yihang Sun, Cheng Zhang, Zhaowei Zhang, Anji Liu,
Song-Chun Zhu, Xiaojun Chang, Junge Zhang, Feng Yin,
Yitao Liang, and Yaodong Yang. Proagent: Building
proactive cooperative agents with large language mod-

els, 2024. URL https://arxiv.org/abs/2308.

113309.

Arrasy Rahman, Ignacio Carlucho, Niklas Hopner, and Ste-
fano V. Albrecht. A general learning framework for open
ad hoc teamwork using graph-based policy learning, 2023.
URLhttps://arxiv.org/abs/2210.05448.

Jianhong Wang, Yang Li, Yuan Zhang, Wei Pan, and Samuel
Kaski. Open ad hoc teamwork with cooperative game the-

ory, 2024. URL https://arxiv.org/abs/2402.

15259.

Xudong Guo, Kaixuan Huang, Jiale Liu, Wenhui Fan, Na-
talia Vélez, Qingyun Wu, Huazheng Wang, Thomas L.
Griffiths, and Mengdi Wang. Embodied 1lm agents
learn to cooperate in organized teams, 2024. URL
https://arxiv.orqg/abs/2403.12482.

Brian Mintz and Feng Fu. Evolutionary multi-agent rein-
forcement learning in group social dilemmas, 2024. URL
https://arxiv.org/abs/2411.10459.

Woodrow Z. Wang, Mark Beliaev, Erdem Biyik, Daniel A.
Lazar, Ramtin Pedarsani, and Dorsa Sadigh. Emergent
prosociality in multi-agent games through gifting, 2021.
URLhttps://arxiv.org/abs/2105.06593.

Edward Hughes, Thomas W. Anthony, Tom Eccles, Joel Z.
Leibo, David Balduzzi, and Yoram Bachrach. Learn-
ing to resolve alliance dilemmas in many-player zero-

sum games, 2020. URL https://arxiv.org/abs/
2003.00799.

Julian Yocum, Phillip Christoffersen, Mehul Damani, Justin
Svegliato, Dylan Hadfield-Menell, and Stuart Russell.
Mitigating generative agent social dilemmas. In NeurIPS
2023 Foundation Models for Decision Making Workshop,
2023. URL https://openreview.net/forum?
1d=5TIdOk7XQ6.

Andrei Lupu and Doina Precup. Gifting in multi-agent rein-
forcement learning. In Proceedings of the 19th Interna-
tional Conference on Autonomous Agents and MultiAgent
Systems, page 789-797, Richland, SC, 2020. International
Foundation for Autonomous Agents and Multiagent Sys-
tems. ISBN 9781450375184.

Manuel Rios, Nicanor Quijano, and Luis Felipe Giraldo.
Understanding the world to solve social dilemmas using
multi-agent reinforcement learning, 2023. URL https:
//arxiv.org/abs/2305.11358.

Joel Z. Leibo, Edgar A. Duéiiez-Guzman, Alexander Vezhn-
evets, John P. Agapiou, Peter Sunehag, Raphael Koster,
Jayd Matyas, Charlie Beattie, Igor Mordatch, and Thore
Graepel. Scalable evaluation of multi-agent reinforce-
ment learning with melting pot. In Marina Meila and
Tong Zhang, editors, Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021, 18-
24 July 2021, Virtual Event, volume 139 of Proceedings
of Machine Learning Research, pages 6187-6199. PMLR,
2021. URL http://proceedings.mlr.press/
v139/1leibo2la.htmll

Elizaveta Tennant, Stephen Hailes, and Mirco Musolesi.
Modeling moral choices in social dilemmas with multi-
agent reinforcement learning. In Proceedings of the
Thirty-Second International Joint Conference on Arti-
ficial Intelligence, 1JCAI-2023, page 317-325. Inter-
national Joint Conferences on Artificial Intelligence
Organization, August 2023. doi: 10.24963/ijcai.
2023/36. URL http://dx.doi.org/10.24963/
ijcai.2023/36.

Kevin R. McKee, Edward Hughes, Tina O. Zhu, Mar-
tin J. Chadwick, Raphael Koster, Antonio Garcia Cas-
taneda, Charlie Beattie, Thore Graepel, Matt Botvinick,
and Joel Z. Leibo. A multi-agent reinforcement learn-
ing model of reputation and cooperation in human
groups, 2023. URL https://arxiv.org/abs/
2103.04982.

Andreas A. Haupt, Phillip J. K. Christoffersen, Mehul
Damani, and Dylan Hadfield-Menell. Formal contracts
mitigate social dilemmas in multi-agent rl, 2024. URL
https://arxiv.org/abs/2208.10469.


https://arxiv.org/abs/2404.16698
https://doi.org/10.1609/aaai.v37i13.26791
https://doi.org/10.1609/aaai.v37i13.26791
https://arxiv.org/abs/2402.03578
https://arxiv.org/abs/2308.11339
https://arxiv.org/abs/2308.11339
https://arxiv.org/abs/2210.05448
https://arxiv.org/abs/2402.15259
https://arxiv.org/abs/2402.15259
https://arxiv.org/abs/2403.12482
https://arxiv.org/abs/2411.10459
https://arxiv.org/abs/2105.06593
https://arxiv.org/abs/2003.00799
https://arxiv.org/abs/2003.00799
https://openreview.net/forum?id=5TIdOk7XQ6
https://openreview.net/forum?id=5TIdOk7XQ6
https://arxiv.org/abs/2305.11358
https://arxiv.org/abs/2305.11358
http://proceedings.mlr.press/v139/leibo21a.html
http://proceedings.mlr.press/v139/leibo21a.html
http://dx.doi.org/10.24963/ijcai.2023/36
http://dx.doi.org/10.24963/ijcai.2023/36
https://arxiv.org/abs/2103.04982
https://arxiv.org/abs/2103.04982
https://arxiv.org/abs/2208.10469

It’s Rational for AI Agents to Procrastinate

Justin Chih-Yao Chen, Swarnadeep Saha, and Mohit Bansal.
Reconcile: Round-table conference improves reasoning
via consensus among diverse 1lms, 2024. URL https:
//arxiv.org/abs/2309.13007.

Bo Li, Fangxiao Wang, and Yu Zhou. Fair allocation of
indivisible chores: Beyond additive costs, 2023. URL
https://arxiv.org/abs/2205.10520.

Jugal Garg, Aniket Murhekar, and John Qin. New algo-
rithms for the fair and efficient allocation of indivis-
ible chores. In Proceedings of the Thirty-Second In-
ternational Joint Conference on Artificial Intelligence,
IJCAI-2023, page 2710-2718. International Joint Con-
ferences on Artificial Intelligence Organization, August

2023. doi: 10.24963/ijcai.2023/302. URL http://dx,

doi.org/10.24963/1jcai.2023/302.

Benjamin Cookson, Soroush Ebadian, and Nisarg Shah.
Constrained fair and efficient allocations, 2024. URL
https://arxiv.orqg/abs/2411.00133.

Lang Yin and Ruta Mehta. On the envy-free allocation
of chores, 2022. URL https://arxiv.org/abs/
2211.15836.

Haris Aziz, Jeremy Lindsay, Angus Ritossa, and Mashbat
Suzuki. Fair allocation of two types of chores, 2023. URL
https://arxiv.org/abs/2211.00879.

Umang Bhaskar, A. R. Sricharan, and Rohit Vaish. On ap-
proximate envy-freeness for indivisible chores and mixed
resources, 2022. URL https://arxiv.org/abs/
2012.06788.

Soroush Ebadian, Rupert Freeman, and Nisarg Shah. Ef-
ficient resource allocation with secretive agents. In
Lud De Raedt, editor, Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence,
IJCAI-22, pages 272-278. International Joint Confer-
ences on Artificial Intelligence Organization, 7 2022. doi:
10.24963/ijcai.2022/39. URL https://doi.org/
10.24963/1i7cai.2022/39. Main Track.

Zhengwu Zhao and Chunyan Zhang. The mechanisms
of labor division from the perspective of task urgency
and game theory. Physica A: Statistical Mechanics and
its Applications, 630:129284, 2023. ISSN 0378-4371.
doi: https://doi.org/10.1016/j.physa.2023.129284.
URL https://www.sciencedirect.com/
science/article/pii/S0378437123008397.

Alexander Rozental, David Forsstrom, Ayah Hussoon,
and Katrin B. Klingsieck.  Procrastination among
university students: Differentiating severe cases in
need of support from less severe cases. Frontiers in
Psychology, Volume 13 - 2022, 2022. ISSN 1664-1078.

11

doi: 10.3389/fpsyg.2022.783570. URL https://wwwl
frontiersin.org/journals/psychology/
articles/10.3389/fpsyg.2022.783570.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms, 2017. URL https://arxiv.org/abs/
1707.06347.

Andrew Y Ng, Daishi Harada, and Stuart J Russell. Policy
invariance under reward transformations: Theory and
application to reward shaping. In Proceedings of the

Sixteenth International Conference on Machine Learning,
pages 278-287, 1999.


https://arxiv.org/abs/2309.13007
https://arxiv.org/abs/2309.13007
https://arxiv.org/abs/2205.10520
http://dx.doi.org/10.24963/ijcai.2023/302
http://dx.doi.org/10.24963/ijcai.2023/302
https://arxiv.org/abs/2411.00133
https://arxiv.org/abs/2211.15836
https://arxiv.org/abs/2211.15836
https://arxiv.org/abs/2211.00879
https://arxiv.org/abs/2012.06788
https://arxiv.org/abs/2012.06788
https://doi.org/10.24963/ijcai.2022/39
https://doi.org/10.24963/ijcai.2022/39
https://www.sciencedirect.com/science/article/pii/S0378437123008397
https://www.sciencedirect.com/science/article/pii/S0378437123008397
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.783570
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.783570
https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.783570
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347

It’s Rational for AI Agents to Procrastinate

It’s Rational for AI Agents to
Procrastinate

Supplementary Material

Contents

This supplementary material is composed of three sections.
In Section[A] we provide restatements and full proofs for
all lemmas, theorems, corollaries, and propositions from
the main body of the paper. In Section [B| we provide the
training details, including compute, hyperparameters, and
the encoding of the Markov labour game into a multi-agent
reinforcement learning environment. In Section|[C| we pro-
vide the extended plots from the three cases analyzed, along
with an explanation of the behaviour represented by the
plots.

A Proofs

A.1 Proposition 1

Statement: An agent ¢ in a Markov labour game M will
win the game if and only if x; > U, and will otherwise idle
rather than labouring.

Proof: The utility of an agent % if the game is lostis: H; =
r;u; + fi, and if the game is won: H;, = r;U. As we have
fi < r; < 0 from the assumptions (and u; > 0), both
terms in H;_  are negative. The agent i operates on the
principle of utility maximization, so in the case of a loss
we have u; = 0. Therefore, the utility of a single agent ¢ is
H; = max(r;U, f;), with the first case representing a win
and the second case representing a loss. The requirement
for a win is then ;U > f;or U < ,f—l =z, A

A2 Lemmal

Statement: In a Markov labour game M, an agent ¢ acting
in isolation will have at most one action discontinuity.

Proof: This behaviour is consistent with the behaviour
of delaying action. The number of timesteps in the game
where outside action could possibly occur (thus minimizing
u; for agent 7) is maximized. However, there is no new
information gathered by agent ¢ at any point during the
length of the game, so the timing of action discontinuities is
equally favourable, with subsequent action discontinuities
serving no purpose. Combining these two facts, the action
discontinuity will occur only once if z; > U and zero times
otherwise. l

A.3 Theorem 1

Statement: An agent ¢ acting in a Markov labour game M
without knowledge of other agents’ incentive structures will
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critically complete all labour games where x; > U, where
x; is the labour capacity defined Definition ]

Proof: Following from Lemma [T|and Prop[] it is preferable
for any given agent to act later than earlier to minimize their
amount of labour due to the possibility of intervention. A
single agent will therefore idle for the first 7' — U timesteps,
at which point another idle action directly results in failure.
Thus labour will always begin at t,..,,, = U in the absence
of interference. If any labour is performed by an outside
source before t,.,, = U, this forms another game with
U’ = U — ¥,u; and a new action discontinuity point of
trem = U’. If labour is performed by an outside source
after t,.e,,, = U, then it follows from the same logic that any
further labour from agent ¢ is pushed back the same amount.
This argument can be continued successively until the last
timestep. The last unit of labour is performed on the last
timestep in all cases, verifying the claim.

A4 Lemma?2

Statement: An agent ¢ acting in multi-agent system inside a
Markov labour game M will minimize action discontinuity.

Proof: From Theorem ] the agent will critically complete
the game and maximize idle actions in the process. It is
guaranteed then that a unit of labour will occur on the last
actionable timestep t,.,, = 1; consider a sub-game with
U =U—1and T’ = T — 1. Using an inductive argu-
ment, the agent will critically complete this new game by
performing labour on the last actionable timestep (t,¢,, = 2
in the original game). This argument can be extended until
trem = U, which accounts for all units of labour. In this
case, there is only one action discontinuity. If labour is per-
formed by agents other than agent ¢ before t,.,, = U, then
agent 1 will still only have one action discontinuity, as the
point of discontinuity is shifted back by an equal amount to
retain critical completion. This is the minimum number of
action discontinuities for a won game, as stated in Lemma
If labour is performed by agents other than agent ¢ after
trem = U, then one action discontinuity per contiguous
interval of outside labour is necessary to retain critical com-
pletion, but no more. This is the minimum amount of action
discontinuities to retain critical completion (Theorem [T))
without outside knowledge of the labour patterns of outside
agents. In all cases, the number of action discontinuities is
minimized. l

A.5 Theorem 2

Statement: Let k; be the number of committed agents,
excluding agent ¢, in the Markov labour game M, and ¢,
be the commitment decision times for an agent ¢. The
behaviour of an agent ¢ in M is governed by the number of
committed agents; an uncommitted agent will only commit
if they are necessary and sufficient to critically complete the



It’s Rational for AI Agents to Procrastinate

game:

U—Xu;
1. ﬁki = |— k:i+j1u]-|

2. If (trem < tki) A (ui + tremri < fz) N (tremki <
U—Yju;) N(U—=Yju; < trem(ks+1)), at any point,
then agent ¢ will commit

3. Agent ¢ will labour iff ¢ is committed and t,.c, < tg,

Proof: From Theorem (1| any agent ¢ will critically com-
plete a Markov labour game M if z; > U. This behaviour
accounts for the labour of other agents through a modified
commitment point, which is expanded upon in Lemma [2]
The mathematical representation of the commitment point
for an agent ¢ relies upon the promise of future labour by
other agents (their commitment) and the total work remain-
ing. The ratio of these values gives the amount of labour
that each of the committed agents (other than agent ¢) plus
agent ¢ would have to take on to critically complete the
game. This is captured in the first statement. Further, agents
will maximize their overall reward by minimizing the num-
ber of labour actions taken. The second statement states a
committing agent must: (1) be in critical completion range
(Theorem E]) (2) have completion be preferable based on
future and past labour, (3) be sufficient for the critical com-
pletion of the game, and (4) be necessary for the critical
completion of the game. This is consistent with the re-
sults seen so far. The third statement governs the timing
of the actual labour actions once committed. Commitment
(from Definition [6) states that labouring contiguously for
the remaining timesteps is preferable for agent ¢ if agent ¢
is committed; however, this is not optimal when consider-
ing k; > 0. At each timestep where labour is performed,
tx, updates so that critical completion is preserved, leading
directly to statement 3.

A.6 Lemma3

Statement: In a Markov labour game M, all contributing
agents ¢ must have z; > U.

Proof: The proof directly follows from Theorem [2} agents
will never commit after ¢, as each agent that labours at ¢
can critically complete the game. All agents that do not
labour at ¢y will never be necessary to critically complete
the game and will not commit. Therefore, all agents that
will take the labour action at least once, will take a labour
action at £y, and so must have z; > U. B

A.7 Corollary 1

Statement: All won Markov labour games M are won at
time t,ep, = 0.

Proof: The proof follows directly from Theorem [I]and The-
orem[2] Critical completion is always preserved through the
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rules governing the labour patterns of the agents. Therefore,
the game will always end at ¢,..,,, = 0, and all won Markov
labour games are won at this time as well. ll

A.8 Theorem 3

Statement: The behaviour of an optimistic agent ¢ in a
Markov labour game M is governed by possibility of com-
pletion; an optimistic agent considers all possible commit-
ment points, and commits if it is possible there are enough
agents to critically complete the game:

2, ...

2. If H(tk/,k’/) €Ty | (trem < tk/) N (ul + tremri <
f,‘) A (t/,-emk/ <U- Z]‘Uj) A (U —Yju; < t,-em(k/ +

1)) at any point, then agent 7 will commit

3. Agent ¢ will labour iff agent ¢ is committed and
((trem < tk:’) A (kz > k/)) V (trem = tk:’)

Proof: The proof follows similar logic to the proof of Theo-
rem[2] with the modification for the definition of optimism.
Optimistic agents require only one of these timesteps to be
possibly valid for commitment after the relevant timestep,
accounting for the possibility that other agents may commit
at that timestep (as opposed to the current ¢, needing to be
valid already in Theorem [2). This is equivalent to assuming
a fictitious &’ and replacing this with the observed k; im-
mediately after the critical timestep ¢;. The agent-specific
timestep ¢y, is replaced with the set of all possible (¢, k)
pairs, represented as 7Tj,. The agent then only labours if the
fictitious &’ matches the observed k; after the timestep. H

A9 Corollary 2

Statement: Any Markov labour game M with a subset of
agents B such that Vi € B, |r;| < |%| is won by a system
of optimistic agents.

Proof: The condition states that there exists a subset of |B|
agents for which \%I labour actions are favourable. This
threshold will be favourable for all agents in B by Theo-
rem 3] resulting in a critical completion of the game.

A.10 Sufficient Condition for Results to Hold

Statement: With p; as the reward for taking the idle action,
we propose that the following condition is sufficient for the
results of our analysis to hold: f; < r; <0 < p;

Explanation: The conditions f; < r; < 0 are assumed
in the analysis of this problem. The remaining conditions
to preserve are (1) the maximization of idle actions and
(2) the preference of winning the game over failure in the
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presence of these modified idle rewards. The condition 0 <
p; ensures that the maximization of idle actions (as f;,r; <
0). The condition from the original formulation ensuring
the second property is f; < 7;, so that some amount of
labour is preferred over failure. The general form of this
inequality is f; < r; — p; as taking the labour action now
has an element of lost utility from not taking the idle action.
With properties (1) and (2) preserved, all of the behaviour
from the base game is also preserved. B

B Experimental Procedures

B.1 Training Details

Hyperparameter Value
anneal_Ir True
batch_size 128
clip_coef 0.2
clip_vloss True
ent_coef 0.01
gae_lambda 0.95
gamma 1
learning_rate 0.00025
max_grad_norm 0.5
minibatch_size 32
n_agents 2
norm_adv True
num_iterations 1562
num_minibatches 4
num_steps 128
target_kl None
total_timesteps 200000
update_epochs 4
vf_coef 0.5

Table 1: Reinforcement learning hyperparameters

We used one RTX 6000, 4 CPU cores, and 20 GB of CPU
RAM to run these experiments. The total time elapsed for
four runs was approximately three hours. All runs used a
standard implementation of proximal-policy-optimization
with the same hyperparameters (given in Table[I)) with sepa-
rate weights and policies per agent.

B.2 Experimental Details

We encode the Markov labour game M into a multi-agent
reinforcement learning environment using PettingZoo. The
observations for an agent 7 in the base case is (r;, U —
Y ;uj, trem, @, k;) where a is the ordered action tuple from
the previous timestep, describing the actions taken by each
agent in the previous timestep. The optimistic mechanism
case uses the same observation space as the base case. The
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transparency case adds the labour penalties of each other
agent to the observations, (r,U — X;u;, trem, a, k;) where
r is the ordered labour penalty tuple that gives each agent’s
labour penalty.

All experiments were run with a constant penalty r; for each
agent . We give U (the labour required) some stochasticity
to promote learning and discourage memorization: U =
Upase + 0y where 6y is a randomly sampled integer 0y €
{0,1,2} and Upase = 10. The labour penalties are 1o =
ry = —1/12, r9 = —1/6, r3 = —1/2. These parameters
were chosen in relation to U and f; (which are set as f;
—1 as described in the Experiments section). Agents O
and 1 are specified such that they have xp,z; > U and
agents 2 and 3 are varying levels of less capable. The time
limit 7" is set based on the end value of U, specifically
T = U + max(dr) + O, where 7 is a randomly sampled
integer 61 € {0,1, 2}.

Each plot (in the body and in the supplementary material)
is taken as an average of 4 runs with 1-sigma error bars
shown. All runs used 200 000 timesteps (approximately 10
000 episodes) and were verified for convergence.

C Plots

In this section, we provide supplementary plots fully detail-
ing the behaviours of each agent in the Markov labour game.
The number of labour actions per episode plots are repeated
from the body of the paper for completeness.

C.1 Base Case

The base case has no modifications, it is a direct implemen-
tation of the Markov labour game M. In Figure 3] we can
see several of the behaviours from the analysis section il-
lustrated. The “Time Remaining” plot shows Corollary
The “Agent ¢ Labours” graphs show that the major contrib-
utors (agents 0 and 1) have x; > U (Theorem [2), while
the remaining agents (z; < U) take the labour action less
than once per episode on average. The agent “Utility” plots
show how agents 2 and 3 exploit agents 0 and 1 by utilizing
less of their labour capacity. Agents 0 and 1 share a similar
amount of the penalty while agents 2 and 3 face almost no
penalties. The average utilities do not reach f; = —1 within
error, indicating that the game is rarely lost.

C.2 Optimistic Mechanism Case

The optimistic mechanism case is implemented as a 90%
discount on the first labour penalty, allowing each agent
to act as if they have x = 10z; for this first action. We
retain the reward structure from the base case (g = x1 >
U > xo9 > x3), but we see in Figurethat agents 2 and 3
contribute meaningfully (around 1 labour action per episode)
despite their labour capacities (Theorem [3). The utility plots
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Figure 3: Agent statistics in a Markov labour game without modifications, showing the number of times each agent took the
labour action in an episode (1 game). The Time Remaining plot shows the agents quickly converge to critical completion.
Agents 2 and 3 are shown to contribute minimally despite the capacity to do so, and have higher utilities than agents 0 and 1.

show that this is closer to an equality-based solution as the
average utility is less negative and the variance between the
agents is lower. The time remaining graph shows that the
agents still have a preference towards critical completion
(Theorem[T)).

C.3 Transparent Case

The transparent case adds the labour penalties of each agent
to every agent’s observation space, giving each agent full
knowledge of xg, ..., xxy_1. We retain the reward structure
from the base case (xg = 1 > U > x5 > x3), but we
see in Figure 3] that agents 2 and 3 contribute meaningfully
despite their labour capacities (Theorem [3). In particular,
agent 2 is a significant contributor. The utility plots show
that this is closer to an equality-based solution than the
optimistic mechanism or base cases as the utilities converge
to a similar value. However, the average utility appears to be
lower than the base or optimistic mechanism cases, which
is explained by a higher failure rate. This higher failure rate
is likely due to the full transparency transforming the labour
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game into a game of chicken. The time remaining graph
shows that the agents still have a preference towards critical
completion when the game is won (Theorem [T)).
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Figure 4: Agent statistics in a Markov labour game with the optimistic mechanism modification, showing the number of
times each agent took the labour action in an episode (1 game). The Time Remaining plot shows the agents still quickly
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Figure 5: Agent behaviours in a Markov labour game with the transparent modification, showing the number of times each
agent took the labour action in an episode (1 game). The Time Remaining plot shows the agents still quickly converge to
critical completion. Compared to the base case, Agents 2 and 3 contribute significantly more. The performance is similar to
the optimistic mechanism case, showing the efficacy of the mechanistic solution.
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